منابع مشابه
Semi-supervised sub-manifold discriminant analysis
In this paper we present a semi-supervised sub-manifold discriminant analysis algorithm. To separate each sub-manifold constructed by each class, we define the within-manifold scatter, between-manifold scatter and total-manifold scatter matrices. The scatter matrices are robust to outlier and diverse-density clusters. Kernelization and direct non-linear embedding are also developed. Experimenta...
متن کاملDiscriminant Analysis with Label Constrained Graph Partition
In this paper, a space partition method called “Label Constrained Graph Partition” (LCGP) is presented to solve the Sample-InterweavingPhenomenon in the original space. We first divide the entire training set into subclasses by means of LCGP, so that the scopes of subclasses will not overlap in the original space. Then “Most Discriminant Subclass Distribution” (MDSD) criterion is proposed to de...
متن کاملEEG feature descriptors and discriminant analysis under Riemannian Manifold perspective
This paper presents a framework to classify motor imagery in the context of multi-class Brain Computer Interface based on electroencephalography (EEG). Covariance matrices are extracted as the EEG signal descriptors, and different dissimilarity metrics on the manifold of Symmetric Positive Definite (SPD) matrices are investigated to classify these covariance descriptors. Specifically, we compar...
متن کاملA multi-manifold discriminant analysis method for image feature extraction
In this paper, we propose a Multi-Manifold Discriminant Analysis (MMDA) method for an image feature extraction and pattern recognition based on graph embedded learning and under the Fisher discriminant analysis framework. In an MMDA, the within-class graph and between-class graph are, respectively, designed to characterize the within-class compactness and the between-class separability, seeking...
متن کاملDiscriminant analysis of functional connectivity patterns on Grassmann manifold
The functional brain networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive function and brain disorders. Rather than analyzing each network encoded by a spatial independent component separately, we propose a novel algorithm for discriminant analysis of functional brain networks jointly at an ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Cybernetics
سال: 2017
ISSN: 2168-2267,2168-2275
DOI: 10.1109/tcyb.2016.2529299